

A Novel Trie And Sequential Feature Analysis-Based Algorithm For Unknown Frame Structure Recognition

Chunfeng Luo, and Yuantao Gu

Department of Electronic Engineering, Tsinghua University, Beijing, China

Email: 13051353880@163.com, gyt@tsinghua.edu.cn

Introduction

- Unknown frame structure recognition:
 - Dataset: Unknown data stream from network traffic data
 - Not structured in network protocol format
 - No prior knowledge about the frequent patterns in the stream

•Main Goal: obtain sufficient knowledge about the transmission content and connectivity between the devices in the network

Motivation: How to Analyze frame structure in unknown network traffic data efficiently?

Proposed Approach

- Frequent sequence extraction
 - Using sliding window to establish a Trie
- Pruning based on confidence and entropy

• Confidence $(B_1 \dots B_n) = \frac{count(B_1 \dots B_n)}{count(B_1 \dots B_{n-1})}$ • $Entropy(T) = -\sum_{B \in [0 \times 00, 0 \times FF]} conf(TB) ln(conf(TB))$ Long sequence merge operation For sequence AC and CB with common subsequence C: •count(ACB) = count(AC) - count(C) + count(CB)Assuring that the error is small enough:

 (1α) (1α)

$$\bullet e = \frac{(1 - \alpha_B)count(C)}{count(AC)} = \frac{(1 - \alpha_B)}{\alpha_A}$$

- Similar sequence merge operation
 - Using DBSCAN to cluster sequences
 - Measuring distance by filtered hamming distance
- Padding data elimination
 - Recording occurrence location: $L = \{l_1, l_2, \dots, l_n\}$ and $d_{i,j} =$ $l_{i+j} - l_i$

Flowchart of analysis algorithm

Frequent pattern state transition diagram example

Result

- Experimental results on the ethernet traffic data captured in Gulab:
- It shows that our algorithm:
 - can analyze the hierarchical relationship of long frequent sequences has high efficiency and benefits following frequent pattern detection

Data type	Ethernet		
Data size	1075kB		
Time	220s		
Speed	4.88kB/s		

Algorithm performance analysis

No.	Frequent pattern	Mask	No.	Protocol layer	Description
1	[64 F6 9D 19 6A 52]	[FF FF FF FF FF FF]	1	Ethernet	MAC Address 1
2	[88 E0 F3 7A 66 F0]	[FF FF FF FF FF FF]	2	Ethernet	MAC Address 2
3			3	PCAP	PCAP timestamp
5			4	IP	Ethernet protocol indicator and IP
4	$[08 \ 00 \ 45 \ 00]$	[FF FF FF F7]			protocol indicator
5	$[00\ 45\ 00\ 00]$	[FF FF FF FA]	5	IP	Ethernet protocol indicator and IP
6	[02 00 00 00]	[97 FF FF FF]			protocol indicator
C			6, 7, 8, 10	Ethernet	PCAP length
			. 12. 13. 16		

PCAP frequent pattern mining results

Comparation of PCAP mining results and description