

An Unknown Protocol Classification Method based on Clustering Algorithm and Hyperparametric Optimization

HaiYang Liu, Linghang Meng, and Yuantao Gu Department of Electronic Engineering, Tsinghua University, Beijing, China Email: {liuhy19, menglh17}@mails.tsinghua.edu.cn, gyt@tsinghua.edu.cn

Motivation: Since standard protocols can be resolved and regulated normally, how can unknown protocols be supervised and utilized?

Main Tasks

Feature extraction

•By introducing the position-coding scheme, n-gram features with semantic information are extracted

 Clustering based on Hyperparametric optimization
Combining SC(Silhouette Coefficient), cluster number threshold and noise percentage control, the uniform *ε*-PSO is proposed

proposed $F_{fitness} = SC - \frac{|cluster_{num} - cluster_{thd}|}{cluster_{thd}} - noise$

Where *cluster*_{thd} and *noise* are priori value

Cluster expressions extraction

Based on the obtained clustering results, weighted
dictionary tree is constructed to obtain cluster expressions

Constructing Classifiers

- •Two types of classifiers are constructed from clustering results
 - Representative feature vector: Advantages: precision and recall score are both relatively high; Disadvantages: after preprocessing, data have to be mapped to the feature space
 - Cluster expression matching: Advantages: high efficiency, direct matching; Disadvantages: some semantic features are missing, precision and recall score are both relatively low

Simulation				
Hyperparametric optimization				
Termination Condition	PSO	€-PSO	Uniform e-PSO	
20	0.795	0.823	0.827	
30	0.802	0.837	0.845	
50	0.815	0.846	0.851	
Cluster result of DBSCAN for Iris				
Method	Eps	minPts	ARI	F1_score
DBSCAN	0.436	4	0.522	0.419
I-DBSCAN	0.405	6	0.637	0.641
AF-DBSCAN	0.389	7	0.568	0.582
KANN-DBSCAN	0.434	8	0.612	0.615
Uniform e-PSO	0.401	4	0.720	0.662

Comparison of Classifiers

Representative Feature Vector

