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Range alignment (RA) is the first step of inverse
synthetic aperture radar (ISAR) translational
compensation. However, the precision of traditional
range alignment method for non-cooperative
targets will dramatically decreases under sparse
aperture condition. We propose a CRAN-RA (CNN
RNN Attention mechanism Network-Range
Alignment) method to address the problem by
combining convolutional neural networks (CNN)
and recurrent neural networks (RNN) with attention
mechanism. The unified network can effectively
integrate regional features extracted by CNN and
temporal features extracted by RNN. Input
unaligned echoes, the network can predict the
aligned echoes. Compared with the traditional
methods and RNN-based methods, the experiments
show that the proposed network can significantly
improve the alignment accuracy under sparse
aperture and low SNR condition.

Abstract

We use the echo data from the testing set to verify
the performance of the proposed network. In order
to prove the advantages of the proposed method,
we choose three groups of testing samples with
different SNR and down-sampling rates to compare
the alignment results with the traditional MCRA
method and RNN-RA method. The CSE and image
ENT of different methods under different conditions
are shown in TABLE 1. Fig. 4 shows the alignment
results. The first row gives the echoes with different
random down-sampling rate and SNR; the second,
third, and fourth give the RA results of MCRA, RNN-
RA, and CRAN-RA, respectively.

Introduction

Fig. 1 shows the schematic of translation
compensation in ISAR imaging. The radar echo can
be written as:

For P, the distance difference of contiguous pulse
index is:

where I means a pulse repetition interval (PRI).
Fig. 2 shows the shift of the range profile of the
target caused by the translational component at a
slow time moment under the sparse aperture
condition. The blue line indicates the aligned echo
and the red line indicates the unaligned echo.

Fig. 3 demonstrates that the CRAN-RA architecture
contains four components: input layer, CNN layer,
RNN layer, attention layer and output layer.

CRAN-Based RA Method

It can be seen from the results in Fig. 4 that the
alignment accuracy of the MCRA method is
significantly reduced under the condition of low
SNR and sparse aperture.
RNN-RA has been shown to be more effective under
full-aperture conditions than traditional methods.
However, it even makes the echoes more chaotic in
processing sparse aperture echoes, this is because
the network structure of the RNN-RA method
cannot distinguish invalid echo sequences from the
sparse aperture echoes, treating all echoes equally.
In contrast, the proposed CRAN-RA method could
achieve range alignment under the condition of low
SNR and sparse apertures.

Discussion

We presented a novel CRAN-RA method to achieve
high-quality range alignment under sparse aperture
condition. The CRAN-RA architecture can effectively
integrate regional features extracted by CNN and
temporal features extracted by RNN, and precisely
learn the mapping from unaligned echoes to
aligned echoes. The simulation experiments show
that the proposed method perform much better
than the traditional method in range alignment of
the sparse aperture echoes.

Conclusions

Down-sampling 
rate 50% 35% 20%

SNR 0dB -5dB -10dB

MCRA 52/4.73 125/5.21 186/5.98

RNN-RA 348/2.65 372/2.79 439/3.15

CRAN-RA 3/1.24 5/1.47 13/1.62

Traditional RA methods rely on high signal-to-noise
ratio (SNR) and the correlation between adjacent
pulses. However, the correlation between adjacent
pulses will be dramatically reduced under low SNR
and sparse aperture conditions, resulting in the
accuracy decline of RA and the degradation of the
final imaging quality.
Applying deep learning to ISAR sparse imaging, the
accuracy and efficiency of signal reconstruction
could be significantly improved.
Yuan et al. proposed a range alignment method
based on deep recurrent neural network(RNN). But
it still depends on the complete echo data, it’s not
suitable for sparse aperture. Deep neural networks
combining CNN and RNN can complement each
other in terms of temporal features and regional
features, and CNN-RNN methods have been proved
superior performance in image classification, text
classification and machine translation. Inspired by
this, we present a new range alignment method
based on CRAN, which adopt an attention
mechanism to integrate regional and temporal
feature information extracted by CNN and RNN.
Simulation experiments show that the proposed
method can efficaciously achieve range alignment
of non-cooperative targets under sparse aperture
condition.

Results

Figure 1. Geometry of translation compensation.

Table 1. CSE/ENT of different RA methods.
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Figure 4. The results of different RA methods.

Fig. 3. The architecture of the CRAN-RA method.

Figure 2. Geometry of translation compensation.

(1)

(2)

50 100 150 200 250

Pulse index

50

100

150

200

250

R
an

ge
 c

el
l

50 100 150 200 250

Pulse index

50

100

150

200

250

R
an

ge
 c

el
l

50 100 150 200 250

Pulse index

50

100

150

200

250

R
an

ge
 c

el
l

50 100 150 200 250

Pulse index

50

100

150

200

250

R
an

ge
 c

el
l

50 100 150 200 250

Pulse index

50

100

150

200

250

R
an

ge
 c

el
l

50 100 150 200 250

Pulse index

50

100

150

200

250

R
an

ge
 c

el
l

50 100 150 200 250

Pulse index

50

100

150

200

250

R
an

ge
 c

el
l

50 100 150 200 250

Pulse index

50

100

150

200

250

R
an

ge
 c

el
l


	幻灯片编号 1

