
The traditional LMS algorithm does not consider the
characteristics of the system itself, and many systems such
as underwater communication and TV transmission often
show a kind of sparsity.

At the same time, the fixed step size and regularization
parameter make it difficult for the algorithm to achieve a good
compromise between the convergence speed and the steady
state error.

As mentioned above, we considering the aspects of the
attraction operator, step size, and regularization parameter,
an improved algorithm named VP-LZA-LMS (Variable
Parameters and Logarithmic function based ZA-LMS) is
proposed in this paper.

Methods
For enables the algorithm to exert different attractive force
according to the value of the coefficient during updating.
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In the proposed algorithm, the norm penalty term is
modified in terms of the logarithmic function of the
weight coefficients and the minimizing MSD is used to
derive variable step size and variable regularization
parameter.

The simulation results have revealed that the
proposed algorithm can achieve better results when
the input signal is correlated or uncorrelated.
Compared with some existing algorithms, it has lower
steady-state error and good tracking performance.

1

2

3
4

5

Case1: Sparse System with  Uncorrelated Input

Case 2:Sparse System with  Correlated Input

In the second case, we used the same system as that of
the first experiment except the correlation coefficient 𝛼 =
0.5, which means the input signal is not white.

Case 3: Changed System with  Correlated Input

In this case, we compared the tracking performance of
the proposed algorithm with the other algorithms in three
kinds of system.

Fig.1 The new zero attractor

Improved Zero-Attracting LMS Algorithm for the 
Adaptive Identification of Sparse System

Ying Guo  Haodong Wang  Lily Li
Shenyang University of Technology

Fig.2 NMSD curve of the
proposed algorithm and
the others in the presence
of strongly sparse systems
driven by white Gaussian
input signal.
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The learning curves in Fig. 4 show that the proposed 
algorithm has more better track performance and lower 
steady-state error .

Fig.4 NMSD curve of the 
proposed algorithm and the 
others in the presence of 
time varying systems driven 
by colored Gaussian input 
signal.

As can be seen from Fig. 3, compared with Fig. 2, the 
performance of all algorithms is degraded when the input 
signal has a correlation. Compared with the other 
algorithms, the steady-state performance of the 
algorithm in this paper is better.

It is observed in Fig. 2 that the proposed algorithm 
significantly outperformed the other algorithms, by the 
reducing steady-state of NMSD.

In the first experiment, we considered an unknown 
system with SR=0.9177, which means the system is 
strongly sparse. The correlation coefficient ! " #, so that 
the input signal was uncorrelated and Gaussian.

          
  

As the basis of this kind of algorithm, uses the L1 norm of the 
weight coefficient as the penalty term, and proposes ZA-LMS 
(Zero-Attracting LMS) algorithm. But ZA-LMS algorithm 
cannot distinguish between zero-valued weight coefficients 
and non-zero-valued weight coefficients, and imposes the 
same degree of zero-attraction on all coefficients.

Fig.3 NMSD curve of the 
proposed algorithm and the 
others in the presence of 
strongly sparse systems 
driven by colored Gaussian 
input signal.

•The logarithmic function is used to replace the original 
penalty term in ZA-LMS.

     
   

   
   
   

   
    

    
   

     
    

    
   

The variability of the step 
size and regularization 
parameter alleviates the 
contradiction between the 
convergence speed and 
the steady state error.
•Based on the minimized 
mean square deviation, the 
updated formulas are 
derived that can adjust the 
step size and regularization 
parameter in real time 
according to the error.


