Constant modulus waveform design for radar with Doppler tolerance² based on local ambiguity function template matching

Qian Zhang¹, Xiaolin Du¹, Guolong Cui^{2,*}, Jibin Zheng³, Jun Dong¹

¹ School of Computer and Control Engineering, Yantai University, Yantai, China ² School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China ³ National Laboratory of Radar Signal Processing, Xidian University, Xi'an, China ^{*} Email: cuiguolong@uestc.edu.cn

Introduction

• The phase-coded signal has a large compression ratio, and is a pulse compression signal with a large time width and a large bandwidth. However, it has Doppler sensitivity. This problem not only seriously affects the target detection performance of radar, but also limits the application range of phase-coded waveform.

Objective

Design the phase-coded waveform with Doppler tolerance.

• Ambiguity function (AF) is a vital indicator to evaluate the performance of the transmit waveform in radar systems. Its

volume invariance hinders the designed sequence from reaching the ideal state over the entire AF region.

Design the AF over the range-Doppler bins

of interest.

Fig. 1. The expected results of locally optimized AF: (a)3D-AF; (b)2D-AF.

From Fig. 1:

2022

- 1. In the region of interest, the ideal LAF exhibits a very narrow sloping ridge with a slope of 1, which has the advantage of Doppler tolerance.
- 2. In the following, the ideal LAF is exploited as a template to optimize the waveform so that the designed waveform has the ideal performance.

Performance comparison of different algorithms

(a) CIAFS; (b) UniAFSIM; (c) Proposed.

Fig. 3. The relationship between the *sumerror* and the number of iterations, CPU running time: (a) The *sumerror* versus iterations; (b) The *sumerror* versus time.

Table II CONVERGENCE SPEED COMPARISON FOR DIFFERENT ALGORITHMS

Algorithms	Iterations number	Runtime(s)	The minimum sumerror	
CIAFS	5589	1130	9.999e-4	
UniAFSIM	2072	412.8	9.991e-4	
Proposed	96	6.102	9.665e-4	

From Fig. 3 and Table II:

1. The time and number of iterations required by the proposed algorithm to achieve the same stop criterion are two orders of magnitude less than those of the CIAFS algorithm and the UniAFSIM algorithm.

	CIAIS	UIIIAI SIIVI	rioposed
PSL (dB)	-18.52	-19.44	-21.24
Lossmain (dB)	7.708	7.121	0.864

2. The proposed algorithm has advantages in convergence speed compared with the

reference algorithms, which is due to the alternate iteration of the two closed-form

solutions in the proposed algorithm accelerates the convergence speed.

Conclusion	Acknowledgement		
 A method for designing waveform with Doppler tolerance based on template matching is proposed. The minimization problem is established by using the variance between the LAF and the template as	This work was supported in part by the National Natural Science		
the objective function and imposing CM constraint. To solve the established non-convex quartic problem, a TMSO algorithm is proposed. Simulation experiments show that the waveform designed by this method is Doppler tolerant, and	Foundation of China under Grant 61801415, 61771109, and		
the execution efficiency is superior to the existing algorithms.	61802330.		