Decoupling Graph Convolutional Network with Adaptive Normalization

Haiyun Zhou ${ }^{1}$, Xuezhi Xiang ${ }^{2}$
${ }^{1}$ College of Public Security, Nanjing Forest Police College
${ }^{2}$ College of Information and Communication Engineering, Harbin Engineering University

- Problem Definition and Contribution:

$>$ Goal: classify the skeleton sequences acquired by depth sensors or pose estimation.

$>$ Key Contributions:

- An action recognition network model which combines the decoupling graph convolution and adaptive normalization module.
- A higher action recognition accuracy (86.8 X-sub, 88.4 X-setup) is achieved on the NTU-RGBD-120 skeleton dataset.

- Experiments:

>Dataset:

- NTU-RGBD-120 dataset: 120 classes of actions, 114480 action samples. The dataset is filmed by 106 volunteers and divided into 32 setups with different positions and backgrounds.
- Strategies of distinguishing training set and the validation set:
a) Cross-Subject (X-sub): distinguished by the volunteers
b) Cross-Setup (X-Setup: distinguished by the setup ID
$>$ Evaluation:
- Statistical Results:

TABLE I. RESULTS ON THE TEST OF NTU-RGBD-120 DATASET

Methods	X-sub (\%)	X-setup (\%)
SGN	79.2	81.5
2s-AGCN	82.9	84.9
Shift-GCN	85.9	87.6
DC-GCN	86.5	88.1
Ours	$\mathbf{8 6 . 8}$	$\mathbf{8 8 . 4}$

- Ablation Analysis:

TABLE II. ABLATION STUDY ON THE NTU-RGBD-120 DATASET

Methods	X-sub (\%)	X-setup (\%)
DC-GCN	82.4	84.3
DC-GCN+SN	82.5	$\mathbf{8 4 . 6}$
DC-GCN+AN	$\mathbf{8 2 . 6}$	$\mathbf{8 4 . 6}$

