An IQ amplitude-phase imbalance correction algorithm in IF receiver

Mao Yuan, D. Xueya, Chen Peng, Yu Xutao, Zeng Rong
State Key Laboratory of Millimeter Waves, Southeast University. Nanjing 210096, China
Email: maoyuan@seu.edu.cn

ABSTRACT

We propose a correction algorithm for I/Q amplitude and phase imbalance in IF receiver, which can solve the problem of image frequency caused by I/Q amplitude and phase imbalance. The test results show that in 25MHz bandwidth, 10MHz bandwidth and 1MHz bandwidth, the IRR before and after correction has been significantly improved. These test results show that most of the corrected image frequencies are submerged in spurious noise, and the image frequency suppression ratio is improved.

THEORY

A. Correction of single-tone signal

IQ two baseband signals Remove DC bias Calculation of amplitude-phase imbalance Construction of correction matrix FFT IRR Calculation

For ordinary single-tone signals, the amplitude-phase inconsistency of I/Q is independent of frequency, so the compensation matrix can be directly constructed for compensation. Analog baseband signal sampled by ADC to obtain discrete baseband signal, and are used to represent the sampled discrete I-road and Q-roaded signals, respectively. The sampling depth is N. The phase imbalance and amplitude imbalance of the orthogonal component and the in-phase component can be expressed as:

\[
\beta = \frac{\sum_{n=1}^{N} (x_i^2[n])}{\sum_{n=1}^{N} (x_q^2[n])}
\]

\[
\alpha = -\arcsin \left(\frac{\sum_{n=1}^{N} (x_i[n]x_q[n])}{\sum_{n=1}^{N} (x_i^2[n]) \sum_{n=1}^{N} (x_q^2[n])} \right)
\]

The correction matrix is:

\[
\begin{bmatrix}
y_i[n] \\
y_q[n]
\end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -\sin \alpha & \beta \cdot \cos \alpha
\end{bmatrix} \begin{bmatrix} x_i[n] \\
x_q[n]
\end{bmatrix}
\]

B. Single-tone signal correction at different frequencies

The frequency offset between single-tone signal and DC is -50MHz to 50MHz, and the sampling interval is 5MHz.

(a) The variation of amplitude imbalance with frequency offset of single-tone signal. (b) The variation of phase imbalance with frequency offset of single-tone signal.

C. Modulation signal correction method

REFERENCE