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Abstract

Methods Conclusion

Structure of CNN

Experiment
The same training dataset is used to train the improved 

CNN (convolution step size is two) and classic CNN 

(convolution step size is one and maximum pooling), and 

the number of parameters trained by the two networks is 

the same. In this case, the accuracy of the improved CNN 

is 3% higher than that of the classic CNN, and the amount 

of computation is only 28% of that of the classic CNN. 

Obviously, the performance of the improved CNN is better.

This design transplants the improved CNN to FPGA in a 

low-cycle and high-efficiency way and makes full use of 

the parallelism of FPGA. It is not sensitive to the number 

of convolutional layers and the size of weight parameters, 

so it can be widely applied to the transplantation of 

convolutional neural networks. This design has great 

significance to the engineering achievement of neural 

networks.

This paper proposes a tri-classification convolutional 

neural networks with a simple structure and easy 

FPGA implementation, which is used to realize traffic 

lights recognition. This design adopts methods such 

as optimized array structure, multi-level data 

multiplexing to improve parallelism in the hardware 

implementation process, which can take into account 

speed and performance. The experimental results 

present that the accuracy of traffic lights classification 

can reach about 99%, and the processing speed on the 

FPGA platform is 22 times higher than that on Inter 

Core i5-8300H CPU. The power on the NVIDIA GTX 

1050Ti platform is 19 times that on the FPGA.

Optimization and multiplexing of arrays

This design converts the weight parameters in the form of 

high-dimensional arrays into the form of two-dimensional 

arrays to facilitate parallel operations between different 

dimensions. 
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Hardware structure flow chart
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Curing parameters

The weight and bias parameters are stored as static 

variables. Its advantage is that the static variables have 

been written into the bitstream file during the compilation 

process.

Optimized Not optimized

Latency 
(clock 
cycles)

Latency
Min 2859765 3313966
Max 2860565 3313966

Interval
Min 2859765 3313966
Max 2860565 3313966

Utilization 
Estimates

BRAM_18K 23 283
DSP48E 21 26

FF(Flip-Flop) 3728 4683
LUT 4962 6223
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