Improvement of the MIMO Performance of an Antenna Array Using Dielectric Substrates

Yipeng Wang
Xiaoming Chen
School of Information and Communications Engineering
Xian Jiaotong University

Introduction

The fading correlation has significant impact on the performance of a MIMO system. And it is directly connected to the diversity gain, antenna gain and multiplexing gain of an MIMO array.

- Aesthetics
- Avoid grating lobes

The inter-element spacing $d \leq \lambda/2$

Problem I: Two antenna elements separated at half-wavelength can still be highly correlated.

For a four-element array, there are six correlation coefficients $(\rho_{ij}, \ i \neq j)$ to be characterized in the correlation matrix

$$R = \begin{pmatrix} \rho_{11} & \cdots & \rho_{14} \\ \cdots & \ddots & \cdots \\ \rho_{41} & \cdots & \rho_{44} \end{pmatrix}$$

Problem II: Too many correlation coefficients are messy to use for comparisons of different arrays.

Objectives

Proposing an effective method for improving MIMO performance of an antenna array. The method should have the following characteristics

- Improve the diversity measure and capacity of the existing array
- Diversity measure $\Psi(R)$ is a scalar that can characterize the overall correlation performance of an arbitrary MIMO array

$$\Psi(R) = \left(\text{tr}(R) / |R| \right)^2$$

- The channel capacity can be calculated as

$$C = E \left\{ \log_2 \det \left[I + \frac{1}{N} \mathbf{H} \mathbf{H}^H \right] \right\}$$

- The method shouldn’t change the structure of the existing array

- The method can be more conveniently applied to the existing equipment, and exists in the form of a radome, etc.

Methods

A method of improving the diversity measure and capacity of single-polarized antenna array in non-isotropic multipath environments by loading dielectric substrate array is proposed. The dielectric substrate array, which is made of relatively higher wave impedance dielectric substrate periodically, is placed on top of the antenna array to enrich the wave scattering.

A diagram showing the configuration of the 1x4 microstrip antenna array and the dielectric substrates.

A diagram showing the configuration of the 4x8 microstrip antenna array and the dielectric substrates.

The antennas in the same column are excited simultaneously.

Simulation Results

Diversity measure and capacity simulated results (without and with the dielectric substrates loaded) of (a) the 1x4 antenna array (b) the 4x8 antenna array.

Conclusion

- The periodic arrangement of dielectric substrates can effectively increase the diversity measure and capacity of the antenna array.
- The decrease of the correlation between adjacent antenna elements is the main reason for the improvement of the diversity measure.

Relationship between the coefficient absolute value of adjacent ports in the 1x4 antenna array and angle spread in horizontal plane.

- The higher the wave impedance of dielectric substrates, the stronger the environment scattering, the more the diversity measure and the capacity are improved.

A diagram showing the diversity and capacity relationship.

Diversity measure and capacity of the 1x4 antenna array alone and with dielectric substrates of different permittivity loaded.

References

