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◆ Ceramic waveguide filter has become the mainstream choice for 5G base station 

filters due to their small size, light weight, low insertion loss, and high rejection.

◆ In order to enhance the out-of-band suppression characteristics of the filter, it is 

usually necessary to introduce an appropriate amount of transmission zeros.

◆ The out-of-band suppression adjustment of the filter can be realized by changing 

the positions of the transmission zeros.

Fig. 1 Topological structure of six-cavity ceramic 

waveguide filter with four transmission zeros.

The coupling matrix of six-cavity ceramic waveguide 

filter with four transmission zeros.
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Fig. 2 The structure of a six-cavity 

ceramic waveguide filter

Fig. 3 The relationship curves of the filter 

|S21| with the change of L1

Fig. 4 The relationship curves of the filter 

|S21| with the change of L2

Fig. 5 S parameter curves of different types of 

ceramic waveguide filters

◆ By sharing the second, fifth resonant cavities and the capacitive coupling structure between the two cavities, two capacitive CQ coupling units 

are formed.

◆ The diagonal coupling is introduced into the CQ unit, and the amount of diagonal coupling is adjusted by changing the length of the through 

slots L1 and L2, thereby affecting the offset of the transmission zeros’ positions. 

◆ As the lengths of the through slots L1 and L2 increase, the transmission zeros TZ1 and TZ4 shift to the low frequency direction, and the 

transmission zeros TZ2 and TZ3 shift to the high frequency direction.
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