Research on Optimized Design of Antenna Based on Improved Whale Optimization Algorithm

Wenmin Fan¹, Zhixin Wang², Weijun Hong¹
¹Beijing University of Posts and Telecommunications, ²State Radio Regulation of China

Abstract

• In order to improve the efficiency of antenna design, various intelligent optimization algorithms are used for solving the complex nonlinear problems involved. The whale optimization algorithm (WOA) is one of the relatively new and well-performing swarm intelligence optimization algorithms.

• In this article, an improved whale optimization algorithm (IWOA) is proposed in view of the shortcomings of WOA. First, the nonlinear control parameter, adaptive weight and Cauchy disturbance are introduced to improve the performance of these algorithms. Then a CEC benchmark function set was selected to test the feasibility and effectiveness of IWOA.

• The results show that IWOA has obvious advantages in terms of convergence speed, convergence accuracy and stability. Finally, the algorithm is used for the optimization of structural parameters of two ultrawideband (UWB) antennas.

Introduction

The antenna synthesis problem can be classified as a black-box optimization problem, and the emergence of intelligent optimization algorithms makes it possible for nonoptimal solutions. Since 1960s, a series of intelligent optimization algorithms has emerged inspired by various biological intelligence behaviors. There have been many achievements in applying these algorithms to solve antenna optimization problems. The WOA is a novel optimization algorithm based on swarm intelligence which was processed by Mirjalili and Lewis in 2016. The WOA has advantages of simple principle, fewer control parameters and strong robustness. However, the WOA is easily trapped into local optimum like other algorithms. In this paper, an improved algorithm is applied to design two kinds of antennas after performance tests.

Algorithm Principle

A. Whale Optimization Algorithm (WOA)

Fig.1. Bubble-net feeding behavior of humpback whales

\[
X(t+1) = X'(t) - \lambda A(AX(t) - X(t))
\]

\[
X(t+1) = X'(t) - |A|CX(t) - X(t)
\]

\[
X(t+1) = X'(t) + \left|X'(t) - X(t)\right| e^{\cos(2\pi t)}
\]

B. Improved Whale Optimization Algorithm (IWOA)

• (a) Nonlinear Convergence Factor

\[
a(t) = 2\cos(\frac{\pi}{2} \cdot \frac{t}{T})
\]

• (b) Adaptive Weight Coefficient

\[
a(t) = \frac{\pi}{2} \tan(\frac{\pi}{2} \cdot \frac{t}{T})
\]

• (c) Cauchy Disturbance

\[
X'(t) = X'(t) \cdot \left[1 + \text{cauchy}(0,1)\right]
\]

Simulation and Comparison

A. Benchmark Functions

• A CEC set consists of 23 classical benchmark functions

• Including unimodal (1-7), multimodal (8-13) and fixed-dimension multimodal (14-23)

B. Selection of Algorithms

• Gravitational Search Algorithm (GSA)

• Grey Wolf Optimizer (GWO)

• Improved Whale Optimization Algorithm (IWOA)

• Moth-Flame Optimization (MFO)

• Particle Swarm Optimization (PSO)

• Salp Swarm Algorithm (SSA)

• Whale Optimization Algorithm (WOA)

C. Experiment Settings

• Maximum number of iterations (1000)

• Initial population size (30)

• Experimental repetition times (30)

D. Analysis of Results

• By analyzing the graphs, it is obvious that IWOA is more competitive than similar algorithms.

• Summing up the average optimal results, it can be concluded that IWOA is able to obtain the optimal solution on 17 test functions, and can also get results close to the optimal value in the rest six functions (F6, F13, F14, F20, F22, F23).

• And IWOA could obtain the smallest standard deviation on 13 test functions which proves that the stability is also improved.

Antenna Optimization

A. Rectangular Angle Cut UWB Antenna

• Fabricated on a 30*30*1.5mm FR4 substrate and fed by 50Ω microstrip line with a width of 1.5mm.

\[
\text{Fitness} = S_{\text{bw}} + S_{\text{bw}}^* k^* \cdot (\text{BW} + \text{BW}^*)^* k^*
\]

\[
S_{\text{bw}} < -10 \text{dB} \quad S_{\text{bw}} > -20 \text{dB}
\]

B. Polygon UWB Antenna

• Fabricated on a 30*30*1.5mm FR4 substrate and fed by 50Ω microstrip line with a width of 1.5mm.

\[
\text{Fitness} = S_{\text{bw}} + S_{\text{bw}}^* k^* \cdot (\text{BW} + \text{BW}^*)^* k^*
\]

\[
S_{\text{bw}} < -10 \text{dB} \quad S_{\text{bw}} > -20 \text{dB}
\]

Conclusion

In this paper, firstly, method aided by intelligent optimization algorithms is introduced based on the current sore point of antenna optimization design. Then three strategies are proposed to improve WOA. It is proved that IWOA is superior to other algorithms in convergence speed, optimization precision and stability. Finally, the IWOA is applied to optimize two different cases of microstrip antenna.

Contact

Author: Wenmin Fan
Beijing University of Posts and Telecommunications
Email: fwm@bupt.edu.cn