
A uniform plain array is assumed in the y-z plane, as shown in Fig. 1.  
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Fig.1 Diagram of plain array 

For the case of multiple incoherent interference sources, the received 

signal ( )tr  can be further modeled as 
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where, ( , ) ( , ) ( , )z y     = a a a ，  represents the Kronecker product. 

( , )z  a  and ( , )y  a  are 
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where, coszu = , sin sinyu  = . 

MVDR beamformer is generally used. With K snapshots ( )k tr ，the 

estimated covariance matrix is 
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Then, the adaptive weight can be obtained, 
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where, 0  and 0  are the elevation and azimuth angle corresponding to the 

direction of the beam center, respectively. 
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Null Widening for Plain Array

To counter sidelobe nonstationary interference, the mismatch between

training snapshots and applied data must be solved. Limited by the

computational costs, it is impossible to update the weights frequently.

To solve this problem, null widening methods based on covariance

matrix tapering has attracted many attentions. However, existing

methods do not fit the real 2-D plain array. In this paper, a null

widening method for plain array based on spatial virtual interference

cluster are derived. Besides, the degrees of freedom consumed by the

null widening in plain array is preliminarily analyzed, and the upper

bound of the degrees of freedom is obtained. The simulation results

verify that the proposed method can effectively widen the adaptive null,

and the derived degrees of freedom can be viewed as a guidance for the

partial adaption system, which will promote its application in

engineering.

Abstract

2021 IEEE 4th International Conference on Electronic 

Information and Communication Technology

August 18-20, 2021 Xi’an, China

Simulation Results

Summary

The traditional null widening method is extended to the more practical

uniform plain array in engineering, and a method to calculate the lower

bound of the consumed degree of freedom is given. The simulation results

show that the proposed method can effectively widen the null in the adaptive

pattern of the plain array, providing guidance for the partial adaption

system.

Array Signal Model

The null widening method for two-dimensional plain array is 

deduced from the perspective of spatial virtual interference cluster. It is 

assumed that there are dense incoherent interference sources in the 

space domain, which are distributed around the actual interference 

source with the same power, and the distribution range is [ 2, 2]y yW W−  

and [ 2, 2]z zW W− , respectively. The composition of the ideal covariance 

matrix can be obtained,  
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According to Mailloux's widening analysis, it can be concluded that 

the widening process of the plain array can be expressed as the 

Hadamard product, 

ˆ=R R T 

The widening matrix T  reflects the effects of spatial virtual 

interference cluster in both y- and z- dimensions, and the element of 

MN MNT  in the  -th row and the  -th column can be written as 
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where 1zm M= +   , modym M= , 1zn M= +   , modyn M= . 

With the widening covariance matrix R , beamforming can 

effectively widen the signal received by the plain array and suppress the 

non-stationary interference in space. 

 

 

The plain array can be modeled as the coupling of two mutually 

perpendicular linear arrays.  
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The perturbation widening of the whole covariance matrix can be 

equivalent to perturbation of two sub-covariance matrices respectively.  

For a uniform linear array, the minimum number of degrees of 

freedom D is, 
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where, B is the bandwidth, and T  is the time aperture. 

For uniform rectangular plain array,  
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The simulation parameters are given in Table I. 

Table I. SIMULATION PARAMETERS 

Number of array elements 20×20 

System frequency 3GHz 

Array distance half of the wavelength 

JNR 50dB 

Direction of beamform azimuth angle: 0° 

elevation angle: 90° 

Direction of interference azimuth angle: 33° 

elevation angle: 45° 

Widening width index 0.1 

Fig. 2 and 3 show the three-dimensional pattern with null widening. 

 

Fig.2 Widening pattern         Fig.3 Widening pattern (overlook) 

 The eigenvalue distribution of the widening covariance matrix is 

presented in Fig. 4, where eigenvalues are arranged in descending 

order. The first 26 eigenvalues show much larger. The result 

calculated will be greater than this result, the validity of the freedom 

selection method can be guaranteed. 

0 50 100 150 200 250 300 350 400
-1

0

1

2

3

4

5

6

7

8

X: 26

Y: 0.04038

Sequence number of eigenvalues

A
m

p
li

tu
d

e
/d

B

  

Fig.4 Distribution of the eigenvalues 

 

The eigenvalue of zR  is 
,1 ,2 ,z z z N     , and the eigenvalue of yR  is 

,1 ,2 ,y y y M     . Then, MN eigenvalues of R  are 

,1 ,2 , ,1 ,2 ,
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where, 
yD  and zD  are the degrees of freedom required for each dimension. It 

is obvious that the sum of the first zD  eigenvalues of M groups can guarantee 

the proportion of 99.99%. Therefore, for a uniform rectangular plain array, a 

preliminary choice of degrees of freedom can be obtained, 

 min ,z yD MD ND  


