The power communication network is the neural center of modern power systems, and optical cables—as a critical component—directly influence the overall system's security. Traditional rule-based and statistical methods lack flexibility and struggle to handle the multimodal and nonlinear characteristics inherent in network data. To address this, in this paper we propose a multi-granularity reconstruction error discrimination method to identify high-risk optical cable segments, enabling multidimensional risk quantification and intelligent early warning.

Power communication network:

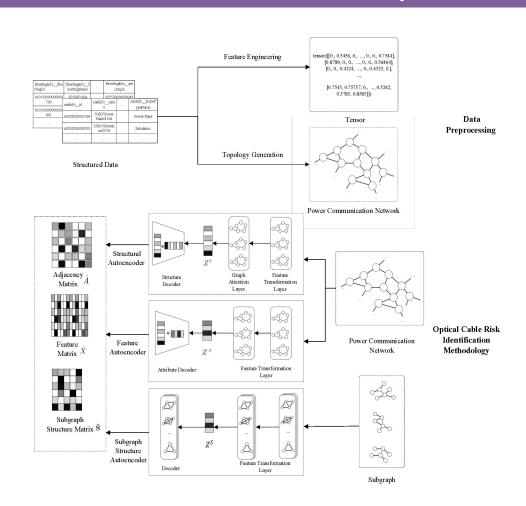
- graph G=(V,E,X)V: nodes (substations, dispatch centers, ...)
- E: edges (optical cables)
- $X \in \mathbb{R}^{k}$: edge attributes

Subgraph patterns: $\{M_1, M_2, ..., M_t\}$

Task:

Training edges $\{E_1,...,E_N\}$ Test edges $\{E_{n+1},...,E_m\}$

Multi-Granularity Reconstruction-Error Framework for Optical-Cable



Three-Stage Pipeline:

- Data Pre-processing: Multi-source fusion → missing-value impute → outlier scrub → normalize
- Feature Engineering:
 - Structural AE: attention-based topology reconstruction
 - Attribute AE: bandwidth, delay, load matrix reconstruction
 - Subgraph AE: one-hop local pattern reconstruction
- Risk Identification Fused error $S = \alpha L_s + \beta L_f + \gamma L_s u_β \rightarrow edge$ anomaly score \rightarrow rank high-risk cables

EXPERIMENT RESULTS AND ANALYSIS

Anomaly Detection Evaluation Metrics

•ROC-AUC:

Area-under-curve of TPR-FPR plot; higher AUC ⇒ stronger discrimination.

Recall@K:

Proportion of true anomalies in top-K ranked edges; suited for imbalanced data and resource-limited maintenance.

♥COMPARISON OF AUC FOR DIFFERENT ALGORITHMS

Method	AUC
GCNAE	0.7592
Dominant	0.7713
our Method	0.8935

Attention-based multi-granularity fusion achieves highest discrimination.

COMPARISON OF RECALL@K FOR DIFFERENT ALGORITHMS

Method	K=300	K=500
GCNAE	0.1595	0.4785
Dominant	0.1963	0.4294
our Method	0.7423	0.8344

Top-500 list captures 83 % of true faults, suited for crew scheduling under limited resources.

▼ FRAMEWORK COMPARISON

Method	Kernal	#Encoders	Attentio n
GCNAE	GCN+AE	1	×
Dominant	GCN+AE	2	×
our Method	GCN+AE	3	V

Subgraph autoencoder + cross-modal attention deliver robust anomaly scoring.