ICCSNT2025

Dialect-Adaptive Conformer Model: Application of Dynamic Parameter Adjustment in Multidialect Speech Recognition

Ying Zhang, Boyi Duan, Jiahao Hui, Xuan Tong

Introduction

Speech recognition technology has made significant pro gress in the past decade, particularly in standard languag es such as Mandarin and English, where performance has approached human-level accuracy. However, in the task o f Multi-Dialect Speech Recognition (MD-ASR), existing s ystems still face considerable challenges. Acoustic differe nces across dialects, such as tonal systems, phoneme inve ntories, and prosodic patterns, as well as the scarcity of d ata for low-resource dialects, result in a significant increa se in the word error rate (WER) of general speech recogn ition models in dialectal scenarios. The Dynamic Conform er Dialect Recognition Model (Dialect-Adaptive Conform er, DA-Conformer) proposed in this paper is designed bas ed on an end-to-end framework. Through dynamic para meter generation and collaborative optimization of multigranularity feature interaction, it achieves dialect-adaptiv e acoustic modeling and decoding.

Method

Our method proposes a novel multi-dialect speech recognition framework based on dynamic Conformer (DA-Conformer). The key innovations of DA-Conformer include: Dynamic Convolution Kernel Generation Module: This module maps dialect embedding vectors to convolutional kernel parameters using a lightweight multi-layer percept ron (MLP), enabling dialect-adaptive local feature extraction and significantly improving the model's ability to capture dialect-sensitive features such as tone and plosives.

Dialect-Conditioned Biased Attention Mechanism: This mechanism injects dialect-related bias terms into the self-attention computation, dynamically adjusting the attention weight distribution to strengthen the modeling of global dependencies in critical acoustic regions.

Results

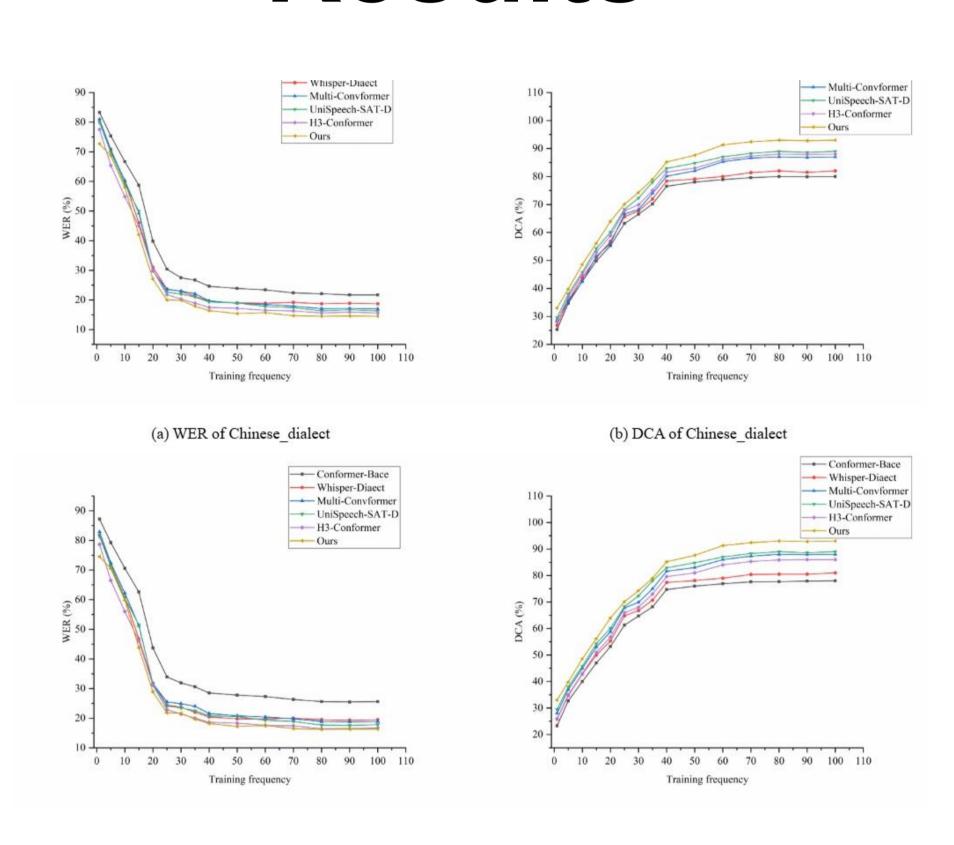


TABLE II
COMPARISON RESULTS OF WER AND DCA ACROSS DIFFERENT MODELS

Model	Parameter (M)	chinese_dialect		ZDialect	
		WER (%)	DCA (%)	WER (%)	DCA (%)
Conformer-Base	270	21.7	80	25.6	78
Whisper-Dialect	1500	18.7	82	19.5	81
UniSpeech-SAT-D	317	16.3	88	17.8	86
H3-Conformer	240	15.6	89	16.7	89
Multi-Convformer	287	17.0	87	18.9	88
Ours	253	14.5	93	16.3	93

Conclusion

- 1.Proposal of a recognition model for multiple dialects is proposed, built upon the Conformer model.
- 2.Dialect embedding vectors are utilized to guide the g eneration of frequency-domain sensitive convolution ker nels, enhancing the ability to extract dialect-specific local features such as tone and plosive sounds.
- 3.A learnable bias matrix is introduced to correct atte ntion weight distributions, strengthening the modeling of tonal boundaries and continuous pitch variation regions.