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❆ Memory access monitoring refers to the monitoring and management of memory 
access behavior in computer systems.

❆ Software instrumentation is a technique for inserting additional code into the original 
program to facilitate the collection of runtime information, program debugging, 
monitoring, and analyzing performance.

❆ Memory access monitoring can also be implemented using hardware mechanisms 
provided by the processor, such as hardware page protection and memory protection 
keys.
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Conclusion

❆ To address the issues of coarse access control granularity and significant performance 
overhead in memory access monitoring scenarios based on hardware page protection 
mechanisms, we first proposed implementing byte-grained memory access monitoring 
using breakpoint exception. This approach overcomes the limitation of current hardware 
page protection mechanism, which only support page-grained access control.

❆ We further reduced additional context switching caused by breakpoint exception through 
emulating memory access instructions in page fault handling. 

❆ When the proportion of memory accesses in the program remains relatively stable, the 
optimization effect is also relatively stable. 

❆ As the number of memory accesses increases, the optimization effect based on 
instruction emulation also improves. In summary, implementing lightweight memory 
access monitoring is of significant importance in memory access-intensive programs. 

❆ We use four benchmarks to test runtime of both approaches, and ultimately achieve an 
average of over 9% improvement in runtime performance.
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Byte-Grained Memory Access Monitoring Based on Exception

❆ To achieve byte-grained memory access monitoring using hardware page protection, it is 
necessary to reapply access restrictions to memory page accessed by an instruction that triggers 
an exception as soon as instruction resumes execution after the exception. 

❆ Emulating execution of memory access instructions directly in user mode can reduce an 
additional exception for each memory access operation, and exception handling introduces 
multiple context switches between kernel mode and user mode.

Optimization Method Based on Instruction Emulation

Execution time reduction in Passive-false after optimization

Program

Runtime (sec)

change
Based on exception

Based on instruction 
emulation

active-false 6594.7 6013.7 8.8%

passive-false 6780.5 6131.3 9.6%

Linux-scalability 6300.2 5726.9 9.1%

threadtest 5012.1 4566.0 8.9%

Comparison of two methods

❆ In the four benchmarks, passive-false performs best after optimization, as it has a single 
memory access operation for each loop iteration during execution, making it very 
suitable as a benchmark for memory access monitoring.
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