
Optimization Methods for Memory Access Monitoring Based on Hardware Page Protection

1 Yutian Fang, National University of Defense Technology, Changsha, China
2 Ruibo Wang, National University of Defense Technology, Changsha, China

3 Wenzhe Zhang, National University of Defense Technology, Changsha, China

Introduction

2024 IEEE 12th International Conference on Computer Science and Network Technology
ICCSNT 2024

Dalian, China October 19-20, 2024

❆ Memory access monitoring refers to the monitoring and management of memory
access behavior in computer systems.

❆ Software instrumentation is a technique for inserting additional code into the original
program to facilitate the collection of runtime information, program debugging,
monitoring, and analyzing performance.

❆ Memory access monitoring can also be implemented using hardware mechanisms
provided by the processor, such as hardware page protection and memory protection
keys.

Experiments

Related works

Instrumentation
Transformation
 (Insert Code)

Instrumented IR
(Intermediate Representation)

Static Instrumentation

Methods

References

Conclusion

❆ To address the issues of coarse access control granularity and significant performance
overhead in memory access monitoring scenarios based on hardware page protection
mechanisms, we first proposed implementing byte-grained memory access monitoring
using breakpoint exception. This approach overcomes the limitation of current hardware
page protection mechanism, which only support page-grained access control.

❆ We further reduced additional context switching caused by breakpoint exception through
emulating memory access instructions in page fault handling.

❆ When the proportion of memory accesses in the program remains relatively stable, the
optimization effect is also relatively stable.

❆ As the number of memory accesses increases, the optimization effect based on
instruction emulation also improves. In summary, implementing lightweight memory
access monitoring is of significant importance in memory access-intensive programs.

❆ We use four benchmarks to test runtime of both approaches, and ultimately achieve an
average of over 9% improvement in runtime performance.

Source Code
(C/C++ etc)

Compiler
(LLVM)

Generate Target Code
(Binary)

Executable File
(With Instrumentation)

Runtime
(Collect Data)

Original Program

Instrumentation Tool

Dynamic Translation

Instrumented Program

Runtime Monitoring

Dynamic Instrumentation Hardware Page Protection

Byte-Grained Memory Access Monitoring Based on Exception

❆ To achieve byte-grained memory access monitoring using hardware page protection, it is
necessary to reapply access restrictions to memory page accessed by an instruction that triggers
an exception as soon as instruction resumes execution after the exception.

❆ Emulating execution of memory access instructions directly in user mode can reduce an
additional exception for each memory access operation, and exception handling introduces
multiple context switches between kernel mode and user mode.

Optimization Method Based on Instruction Emulation

Execution time reduction in Passive-false after optimization

Program

Runtime (sec)

change
Based on exception

Based on instruction
emulation

active-false 6594.7 6013.7 8.8%

passive-false 6780.5 6131.3 9.6%

Linux-scalability 6300.2 5726.9 9.1%

threadtest 5012.1 4566.0 8.9%

Comparison of two methods

❆ In the four benchmarks, passive-false performs best after optimization, as it has a single
memory access operation for each loop iteration during execution, making it very
suitable as a benchmark for memory access monitoring.

[1] M. Payer, K. Enrico, and R. G. Thomas. "Lightweight memory tracing." In 2013 USENIX Annual Technical Conference
(USENIX ATC 13), pp. 115-126. 2013.
[2] S. Park, B. Madhuparna, and U. Alexandru. "DAOS: Data access-aware operating system." In Proceedings of the 31st
International Symposium on High-Performance Parallel and Distributed Computing, pp. 4-15. 2022.
[3] K. Lu, W. Z. Zhang, X. P. Wang, M. Luján, and A. Nisbet. "Flexible page-level memory access monitoring based on
virtualization hardware." ACM SIGPLAN Notices 52, no. 7 (2017): 201-213.
[4] S. S. Gong, A. Deniz, F. Pedro and M. Petros. "Snowboard: Finding kernel concurrency bugs through systematic inter-
thread communication analysis." In Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles, pp.
66-83. 2021.
[5] H. J. Wang, J. D. Zhai, X. C. Tang, B. W. Yu, X. S. Ma, and W. G. Chen. "Spindle: Informed memory access monitoring." In
2018 {USENIX} Annual Technical Conference ({USENIX}{ATC} 18), pp. 561-574. 2018.
[6] Y. S. Q Zhang, K. Lu, Z. W. Wu, and W. Z. Zhang. "PMemTrace: Lightweight and Efficient Memory Access Monitoring for
Persistent Memory." In Algorithms and Architectures for Parallel Processing: 22nd International Conference, ICA3PP 2022,
Copenhagen, Denmark, October 10–12, 2022, Proceedings, pp. 81-97. Cham: Springer Nature Switzerland, 2023.
[7] K. Serebryany, B. Derek, P. Alexander, and V. Dmitriy. "{AddressSanitizer}: A fast address sanity checker." In 2012 USENIX
annual technical conference (USENIX ATC 12), pp. 309-318. 2012.
[8] C. Lattner, and A. Vikram. "LLVM: A compilation framework for lifelong program analysis & transformation." In
International symposium on code generation and optimization, 2004. CGO 2004., pp. 75-86. IEEE, 2004.
[9] C. K. Luk, R. Cohn, R. Muth, et al.Pin：building customized program analysis tools with dynamic instrumentation[J].
ACM Sigplan Notices, 2005, 40 (6) :190-200.
[10] M. Back, M. Charney, R. Cohn, et al.Analyzing parallel programs with Pin[J]. Computer, 2010, 43 (3) :34-41.
[11] K. Hzelwood, A. Klauser. A dynamic binary instrumentation engine for the ARM architecture[C]//Proc of International
Conference on Compilers, Architecture and Synthesis for Embedded Systems.New York:ACM Press, 2006:261-270.
[12] C. Nachiketa, M. Srijoni, P. D. Partha; C. Amlan.PARALLELC-ASSIST:Productivity Accelerator Suite based on Dynamic
Instrumentation[J].IEEE Access,2023,Vol.11: 1
[13] Z. W. Wu, K. Lu, A. Nisbet, W. Z. Zhang, and M. Luján. "PMThreads: Persistent memory threads harnessing versioned
shadow copies." In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and
Implementation, pp. 623-637. 2020.
[14] E.D. Berger, K.S. McKinley, R.D. Blumofe, P.R. Wilson.View Correspondence (jump link).Hoard: A scalable memory
allocator for multithreaded applications(Article)[J].SIGPLAN Notices (ACM SpecialInterest Group on Programming
Languages),2000,Vol.35(11): 117-128.

